On a New Homotopy Continuation Trajectory for Nonlinear Complementarity Problems
نویسندگان
چکیده
Most known continuation methods for P0 complementarity problems require some restrictive assumptions, such as the strictly feasible condition and the properness condition, to guarantee the existence and the boundedness of certain homotopy continuation trajectory. To relax such restrictions, we propose a new homotopy formulation for the complementarity problem based on which a new homotopy continuation trajectory is generated. For P0 complementarity problems, the most promising feature of this trajectory is the assurance of the existence and the boundedness of the trajectory under a condition that is strictly weaker than the standard ones used widely in the literature of continuation methods. Particularly, the often-assumed strictly feasible condition is not required here. When applied to P∗ complementarity problems, the boundedness of the proposed trajectory turns out to be equivalent to the solvability of the problem, and the entire trajectory converges to the (unique) least element solution provided that it exists. Moreover, for monotone complementarity problems, the whole trajectory always converges to a least 2-norm solution provided that the solution set of the problem is nonempty. The results presented in this paper can serve as a theoretical basis for constructing a new path-following algorithm for solving complementarity problems, even for the situations where the solution set is unbounded.
منابع مشابه
On a New Homotopy Continuation Trajectory Fornonlinear Complementarity
Most known continuation methods for P 0 complementarity problems require some restrictive assumptions, such as the strictly feasible condition and a properness condition, to guarantee the existence and the boundedness of certain homotopy continuation trajectory. To relax such restrictions, we propose in this paper a new homotopy formulation for the complementarity problem based on which a new h...
متن کاملHomotopy Continuation Methods for Nonlinear Complementarity Problems
A complementarity problem with a continuous mapping f from R n into itself can be written as the system of equations F(x, y ) = 0 and ( x , y ) > 0. Here F is the mapping from R ~ " into itself defined by F(x, y) = ( x l y ,, x 2 y Z , . . . , x , ~ y e , y f f x ) ) . Under the assumption that the mapping f is a P,,-function, we study various aspects of homotopy continuation methods that trace...
متن کاملContinuation method for nonlinear complementarity problems via normal maps
In a recent paper by Chen and Mangasarian (C. Chen, O.L. Mangasarian, A class of smoothing functions for nonlinear and mixed complementarity problems, Computational Optimization and Applications 2 (1996), 97±138) a class of parametric smoothing functions has been proposed to approximate the plus function present in many optimization and complementarity related problems. This paper uses these sm...
متن کاملA Continuation Method for Nonlinear Complementarity Problems over Symmetric Cones
In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.
متن کاملA continuation method for nonlinear complementarity problems over symmetric cone
In this paper, we introduce a new P -type condition for nonlinear functions defined over Euclidean Jordan algebras, and study a continuation method for nonlinear complementarity problems over symmetric cones. This new P -type condition represents a new class of nonmonotone nonlinear complementarity problems that can be solved numerically.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Oper. Res.
دوره 26 شماره
صفحات -
تاریخ انتشار 2001